<p>You are given a positive integer <code>n</code> representing the number of nodes of a <strong>Directed Acyclic Graph</strong> (DAG). The nodes are numbered from <code>0</code> to <code>n - 1</code> (<strong>inclusive</strong>).</p>
<p>You are also given a 2D integer array <code>edges</code>, where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> denotes that there is a <strong>unidirectional</strong> edge from <code>from<sub>i</sub></code> to <code>to<sub>i</sub></code> in the graph.</p>
<p>Return <em>a list</em><code>answer</code><em>, where </em><code>answer[i]</code><em> is the <strong>list of ancestors</strong> of the</em><code>i<sup>th</sup></code><em>node, sorted in <strong>ascending order</strong></em>.</p>
<p>A node <code>u</code> is an <strong>ancestor</strong> of another node <code>v</code> if <code>u</code> can reach <code>v</code> via a set of edges.</p>