"content":"<p>You are the owner of a company that creates alloys using various types of metals. There are <code>n</code> different types of metals available, and you have access to <code>k</code> machines that can be used to create alloys. Each machine requires a specific amount of each metal type to create an alloy.</p>\n\n<p>For the <code>i<sup>th</sup></code> machine to create an alloy, it needs <code>composition[i][j]</code> units of metal of type <code>j</code>. Initially, you have <code>stock[i]</code> units of metal type <code>i</code>, and purchasing one unit of metal type <code>i</code> costs <code>cost[i]</code> coins.</p>\n\n<p>Given integers <code>n</code>, <code>k</code>, <code>budget</code>, a <strong>1-indexed</strong> 2D array <code>composition</code>, and <strong>1-indexed</strong> arrays <code>stock</code> and <code>cost</code>, your goal is to <strong>maximize</strong> the number of alloys the company can create while staying within the budget of <code>budget</code> coins.</p>\n\n<p><strong>All alloys must be created with the same machine.</strong></p>\n\n<p>Return <em>the maximum number of alloys that the company can create</em>.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> n = 3, k = 2, budget = 15, composition = [[1,1,1],[1,1,10]], stock = [0,0,0], cost = [1,2,3]\n<strong>Output:</strong> 2\n<strong>Explanation:</strong> It is optimal to use the 1<sup>st</sup> machine to create alloys.\nTo create 2 alloys we need to buy the:\n- 2 units of metal of the 1<sup>st</sup> type.\n- 2 units of metal of the 2<sup>nd</sup> type.\n- 2 units of metal of the 3<sup>rd</sup> type.\nIn total, we need 2 * 1 + 2 * 2 + 2 * 3 = 12 coins, which is smaller than or equal to budget = 15.\nNotice that we have 0 units of metal of each type and we have to buy all the required units of metal.\nIt can be proven that we can create at most 2 alloys.\n</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> n = 3, k = 2, budget = 15, composition = [[1,1,1],[1,1,10]], stock = [0,0,100], cost = [1,2,3]\n<strong>Output:</strong> 5\n<strong>Explanation:</strong> It is optimal to use the 2<sup>nd</sup> machine to create alloys.\nTo create 5 alloys we need to buy:\n- 5 units of metal of the 1<sup>st</sup> type.\n- 5 units of metal of the 2<sup>nd</sup> type.\n- 0 units of metal of the 3<sup>rd</sup> type.\nIn total, we need 5 * 1 + 5 * 2 + 0 * 3 = 15 coins, which is smaller than or equal to budget = 15.\nIt can be proven that we can create at most 5 alloys.\n</pre>\n\n<p><strong class=\"example\">Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> n = 2, k = 3, budget = 10, composition = [[2,1],[1,2],[1,1]], stock = [1,1], cost = [5,5]\n<strong>Output:</strong> 2\n<strong>Explanation:</strong> It is optimal to use the 3<sup>rd</sup> machine to create alloys.\nTo create 2 alloys we need to buy the:\n- 1 unit of metal of the 1<sup>st</sup> type.\n- 1 unit of metal of the 2<sup>nd</sup> type.\nIn total, we need 1 * 5 + 1 * 5 = 10 coins, which is smaller than or equal to budget = 10.\nIt can be proven that we can create at most 2 alloys.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>1 <= n, k <= 100</code></li>\n\t<li><code>0 <= budget <= 10<sup>8</sup></code></li>\n\t<li><code>composition.length == k</code></li>\n\t<li><code>composition[i].length == n</code></li>\n\t<li><code>1 <= composition[i][j] <= 100</code></li>\n\t<li><code>stock.length == cost.length == n</code></li>\n\t<li><code>0 <= stock[i] <= 10<sup>8</sup></code></li>\n\t<li><code>1 <= cost[i] <= 100</code></li>\n</ul>\n",
"code":"class Solution {\npublic:\n int maxNumberOfAlloys(int n, int k, int budget, vector<vector<int>>& composition, vector<int>& stock, vector<int>& cost) {\n \n }\n};",
"__typename":"CodeSnippetNode"
},
{
"lang":"Java",
"langSlug":"java",
"code":"class Solution {\n public int maxNumberOfAlloys(int n, int k, int budget, List<List<Integer>> composition, List<Integer> stock, List<Integer> cost) {\n \n }\n}",
"code":"int maxNumberOfAlloys(int n, int k, int budget, int** composition, int compositionSize, int* compositionColSize, int* stock, int stockSize, int* cost, int costSize){\n\n}",
"__typename":"CodeSnippetNode"
},
{
"lang":"C#",
"langSlug":"csharp",
"code":"public class Solution {\n public int MaxNumberOfAlloys(int n, int k, int budget, IList<IList<int>> composition, IList<int> stock, IList<int> cost) {\n \n }\n}",
"envInfo":"{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 20 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 17</code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.3.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/tree/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.1 version of <a href=\\\"https://githu