<p>Given two positive integers <code>left</code> and <code>right</code>, find the two integers <code>num1</code> and <code>num2</code> such that:</p>
<ul>
<li><code>left <= num1 < num2 <= right </code>.</li>
<li><code>num1</code> and <code>num2</code> are both <strong>prime</strong> numbers.</li>
<li><code>num2 - num1</code> is the <strong>minimum</strong> amongst all other pairs satisfying the above conditions.</li>
</ul>
<p>Return <em>the positive integer array</em><code>ans = [num1, num2]</code>. <em>If there are multiple pairs satisfying these conditions, return the one with the minimum</em><code>num1</code><em>value or</em><code>[-1, -1]</code><em>if such numbers do not exist.</em></p>
<p>A number greater than <code>1</code> is called <b>prime</b> if it is only divisible by <code>1</code> and itself.</p>
<p> </p>
<p><strongclass="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> left = 10, right = 19
<strong>Output:</strong> [11,13]
<strong>Explanation:</strong> The prime numbers between 10 and 19 are 11, 13, 17, and 19.
The closest gap between any pair is 2, which can be achieved by [11,13] or [17,19].
Since 11 is smaller than 17, we return the first pair.
</pre>
<p><strongclass="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> left = 4, right = 6
<strong>Output:</strong> [-1,-1]
<strong>Explanation:</strong> There exists only one prime number in the given range, so the conditions cannot be satisfied.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= left <= right <= 10<sup>6</sup></code></li>