2023-12-09 18:53:53 +08:00
< p > Table: < code > Movies< / code > < / p >
< pre >
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| movie_id | int |
| title | varchar |
+---------------+---------+
movie_id is the primary key (column with unique values) for this table.
title is the name of the movie.
< / pre >
< p > < / p >
< p > Table: < code > Users< / code > < / p >
< pre >
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| name | varchar |
+---------------+---------+
user_id is the primary key (column with unique values) for this table.
2025-01-09 20:29:41 +08:00
The column ' name' has unique values.
2023-12-09 18:53:53 +08:00
< / pre >
< p > Table: < code > MovieRating< / code > < / p >
< pre >
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| movie_id | int |
| user_id | int |
| rating | int |
| created_at | date |
+---------------+---------+
2025-01-09 20:29:41 +08:00
(movie_id, user_id) is the primary key (column with unique values) for this table.
2023-12-09 18:53:53 +08:00
This table contains the rating of a movie by a user in their review.
created_at is the user' s review date.
< / pre >
< p > < / p >
< p > Write a solution to:< / p >
< ul >
< li > Find the name of the user who has rated the greatest number of movies. In case of a tie, return the lexicographically smaller user name.< / li >
< li > Find the movie name with the < strong > highest average< / strong > rating in < code > February 2020< / code > . In case of a tie, return the lexicographically smaller movie name.< / li >
< / ul >
< p > The result format is in the following example.< / p >
< p > < / p >
< p > < strong class = "example" > Example 1:< / strong > < / p >
< pre >
< strong > Input:< / strong >
Movies table:
+-------------+--------------+
| movie_id | title |
+-------------+--------------+
| 1 | Avengers |
| 2 | Frozen 2 |
| 3 | Joker |
+-------------+--------------+
Users table:
+-------------+--------------+
| user_id | name |
+-------------+--------------+
| 1 | Daniel |
| 2 | Monica |
| 3 | Maria |
| 4 | James |
+-------------+--------------+
MovieRating table:
+-------------+--------------+--------------+-------------+
| movie_id | user_id | rating | created_at |
+-------------+--------------+--------------+-------------+
| 1 | 1 | 3 | 2020-01-12 |
| 1 | 2 | 4 | 2020-02-11 |
| 1 | 3 | 2 | 2020-02-12 |
| 1 | 4 | 1 | 2020-01-01 |
| 2 | 1 | 5 | 2020-02-17 |
| 2 | 2 | 2 | 2020-02-01 |
| 2 | 3 | 2 | 2020-03-01 |
| 3 | 1 | 3 | 2020-02-22 |
| 3 | 2 | 4 | 2020-02-25 |
+-------------+--------------+--------------+-------------+
< strong > Output:< / strong >
+--------------+
| results |
+--------------+
| Daniel |
| Frozen 2 |
+--------------+
< strong > Explanation:< / strong >
Daniel and Monica have rated 3 movies (" Avengers" , " Frozen 2" and " Joker" ) but Daniel is smaller lexicographically.
Frozen 2 and Joker have a rating average of 3.5 in February but Frozen 2 is smaller lexicographically.
< / pre >