<p>You are given a string <code>s</code> that consists of the digits <code>'1'</code> to <code>'9'</code> and two integers <code>k</code> and <code>minLength</code>.</p>
<p>A partition of <code>s</code> is called <strong>beautiful</strong> if:</p>
<ul>
<li><code>s</code> is partitioned into <code>k</code> non-intersecting substrings.</li>
<li>Each substring has a length of <strong>at least</strong><code>minLength</code>.</li>
<li>Each substring starts with a <strong>prime</strong> digit and ends with a <strong>non-prime</strong> digit. Prime digits are <code>'2'</code>, <code>'3'</code>, <code>'5'</code>, and <code>'7'</code>, and the rest of the digits are non-prime.</li>
</ul>
<p>Return<em> the number of <strong>beautiful</strong> partitions of </em><code>s</code>. Since the answer may be very large, return it <strong>modulo</strong><code>10<sup>9</sup> + 7</code>.</p>
<p>A <strong>substring</strong> is a contiguous sequence of characters within a string.</p>
<p> </p>
<p><strongclass="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "23542185131", k = 3, minLength = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There exists three ways to create a beautiful partition:
"2354 | 218 | 5131"
"2354 | 21851 | 31"
"2354218 | 51 | 31"
</pre>
<p><strongclass="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "23542185131", k = 3, minLength = 3
<strong>Output:</strong> 1
<strong>Explanation:</strong> There exists one way to create a beautiful partition: "2354 | 218 | 5131".
</pre>
<p><strongclass="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "3312958", k = 3, minLength = 1
<strong>Output:</strong> 1
<strong>Explanation:</strong> There exists one way to create a beautiful partition: "331 | 29 | 58".