<p>Given an array <code>edges</code> where <code>edges[i] = [type<sub>i</sub>, u<sub>i</sub>, v<sub>i</sub>]</code> represents a bidirectional edge of type <code>type<sub>i</sub></code> between nodes <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code>, find the maximum number of edges you can remove so that after removing the edges, the graph can still be fully traversed by both Alice and Bob. The graph is fully traversed by Alice and Bob if starting from any node, they can reach all other nodes.</p>
<strong>Input:</strong> n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
<strong>Output:</strong> 2
<strong>Explanation: </strong>If we remove the 2 edges [1,1,2] and [1,1,3]. The graph will still be fully traversable by Alice and Bob. Removing any additional edge will not make it so. So the maximum number of edges we can remove is 2.
<strong>Input:</strong> n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
<strong>Output:</strong> -1
<b>Explanation: </b>In the current graph, Alice cannot reach node 4 from the other nodes. Likewise, Bob cannot reach 1. Therefore it's impossible to make the graph fully traversable.</pre>