2022-03-27 18:35:17 +08:00
< p > Table: < code > Department< / code > < / p >
< pre >
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| revenue | int |
| month | varchar |
+-------------+---------+
2023-12-09 18:42:21 +08:00
In SQL,(id, month) is the primary key of this table.
2022-03-27 18:35:17 +08:00
The table has information about the revenue of each department per month.
The month has values in [" Jan" ," Feb" ," Mar" ," Apr" ," May" ," Jun" ," Jul" ," Aug" ," Sep" ," Oct" ," Nov" ," Dec" ].
< / pre >
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > Reformat the table such that there is a department id column and a revenue column < strong > for each month< / strong > .< / p >
2022-03-27 18:35:17 +08:00
< p > Return the result table in < strong > any order< / strong > .< / p >
2023-12-09 18:42:21 +08:00
< p > The result format is in the following example.< / p >
2022-03-27 18:35:17 +08:00
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong >
Department table:
+------+---------+-------+
| id | revenue | month |
+------+---------+-------+
| 1 | 8000 | Jan |
| 2 | 9000 | Jan |
| 3 | 10000 | Feb |
| 1 | 7000 | Feb |
| 1 | 6000 | Mar |
+------+---------+-------+
< strong > Output:< / strong >
+------+-------------+-------------+-------------+-----+-------------+
| id | Jan_Revenue | Feb_Revenue | Mar_Revenue | ... | Dec_Revenue |
+------+-------------+-------------+-------------+-----+-------------+
| 1 | 8000 | 7000 | 6000 | ... | null |
| 2 | 9000 | null | null | ... | null |
| 3 | null | 10000 | null | ... | null |
+------+-------------+-------------+-------------+-----+-------------+
< strong > Explanation:< / strong > The revenue from Apr to Dec is null.
Note that the result table has 13 columns (1 for the department id + 12 for the months).
< / pre >