<p>Given an <code>n x n</code><code>matrix</code> where each of the rows and columns is sorted in ascending order, return <em>the</em><code>k<sup>th</sup></code><em>smallest element in the matrix</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> smallest element <strong>in the sorted order</strong>, not the <code>k<sup>th</sup></code><strong>distinct</strong> element.</p>
<p>You must find a solution with a memory complexity better than <code>O(n<sup>2</sup>)</code>.</p>
<strong>Input:</strong> matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
<strong>Output:</strong> 13
<strong>Explanation:</strong> The elements in the matrix are [1,5,9,10,11,12,13,<u><strong>13</strong></u>,15], and the 8<sup>th</sup> smallest number is 13
<li>All the rows and columns of <code>matrix</code> are <strong>guaranteed</strong> to be sorted in <strong>non-decreasing order</strong>.</li>
<li><code>1 <= k <= n<sup>2</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>Could you solve the problem with a constant memory (i.e., <code>O(1)</code> memory complexity)?</li>
<li>Could you solve the problem in <code>O(n)</code> time complexity? The solution may be too advanced for an interview but you may find reading <ahref="http://www.cse.yorku.ca/~andy/pubs/X+Y.pdf"target="_blank">this paper</a> fun.</li>