<p>Select exactly <b><code>k</code></b> disjoint <spandata-keyword="subarray-nonempty">subarrays</span><b><code>sub<sub>1</sub>, sub<sub>2</sub>, ..., sub<sub>k</sub></code></b> from <code>nums</code> such that the last element of <code>sub<sub>i</sub></code> appears before the first element of <code>sub<sub>{i+1}</sub></code> for all <code>1 <= i <= k-1</code>. The goal is to maximize their combined strength.</p>
<p>where <b><code>sum(sub<sub>i</sub>)</code></b> is the sum of the elements in the <code>i</code>-th subarray.</p>
<p>Return the <strong>maximum</strong> possible strength that can be obtained from selecting exactly <b><code>k</code></b> disjoint subarrays from <code>nums</code>.</p>
<p><strong>Note</strong> that the chosen subarrays <strong>don't</strong> need to cover the entire array.</p>
<p>The only possible way to select 5 disjoint subarrays is: nums[0..0], nums[1..1], nums[2..2], nums[3..3], and nums[4..4]. The strength is calculated as follows:</p>