2025-01-09 20:29:41 +08:00
< p > Given a < strong > 0-indexed< / strong > integer array < code > nums< / code > of size < code > n< / code > containing all numbers from < code > 1< / code > to < code > n< / code > , return < em > the number of increasing quadruplets< / em > .< / p >
< p > A quadruplet < code > (i, j, k, l)< / code > is increasing if:< / p >
< ul >
< li > < code > 0 < = i < j < k < l < n< / code > , and< / li >
< li > < code > nums[i] < nums[k] < nums[j] < nums[l]< / code > .< / li >
< / ul >
< p > < / p >
< p > < strong class = "example" > Example 1:< / strong > < / p >
< pre >
< strong > Input:< / strong > nums = [1,3,2,4,5]
< strong > Output:< / strong > 2
< strong > Explanation:< / strong >
- When i = 0, j = 1, k = 2, and l = 3, nums[i] < nums[k] < nums[j] < nums[l].
- When i = 0, j = 1, k = 2, and l = 4, nums[i] < nums[k] < nums[j] < nums[l].
There are no other quadruplets, so we return 2.
< / pre >
< p > < strong class = "example" > Example 2:< / strong > < / p >
< pre >
< strong > Input:< / strong > nums = [1,2,3,4]
< strong > Output:< / strong > 0
< strong > Explanation:< / strong > There exists only one quadruplet with i = 0, j = 1, k = 2, l = 3, but since nums[j] < nums[k], we return 0.
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > 4 < = nums.length < = 4000< / code > < / li >
< li > < code > 1 < = nums[i] < = nums.length< / code > < / li >
< li > All the integers of < code > nums< / code > are < strong > unique< / strong > . < code > nums< / code > is a permutation.< / li >
< / ul >