<p>There is a room with <code>n</code> bulbs labeled from <code>1</code> to <code>n</code> that all are turned on initially, and <strong>four buttons</strong> on the wall. Each of the four buttons has a different functionality where:</p>
<ul>
<li><strong>Button 1:</strong> Flips the status of all the bulbs.</li>
<li><strong>Button 2:</strong> Flips the status of all the bulbs with even labels (i.e., <code>2, 4, ...</code>).</li>
<li><strong>Button 3:</strong> Flips the status of all the bulbs with odd labels (i.e., <code>1, 3, ...</code>).</li>
<li><strong>Button 4:</strong> Flips the status of all the bulbs with a label <code>j = 3k + 1</code> where <code>k = 0, 1, 2, ...</code> (i.e., <code>1, 4, 7, 10, ...</code>).</li>
</ul>
<p>You must make <strong>exactly</strong><code>presses</code> button presses in total. For each press, you may pick <strong>any</strong> of the four buttons to press.</p>
<p>Given the two integers <code>n</code> and <code>presses</code>, return <em>the number of <strong>different possible statuses</strong> after performing all </em><code>presses</code><em> button presses</em>.</p>