<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the number of <strong>subarrays</strong> of </em><code>nums</code><em> where the greatest common divisor of the subarray's elements is </em><code>k</code>.</p>
<p>A <strong>subarray</strong> is a contiguous non-empty sequence of elements within an array.</p>
<p>The <strong>greatest common divisor of an array</strong> is the largest integer that evenly divides all the array elements.</p>
<p> </p>
<p><strongclass="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [9,3,1,2,6,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarrays of nums where 3 is the greatest common divisor of all the subarray's elements are:
- [9,<u><strong>3</strong></u>,1,2,6,3]
- [9,3,1,2,6,<u><strong>3</strong></u>]
- [<u><strong>9,3</strong></u>,1,2,6,3]
- [9,3,1,2,<u><strong>6,3</strong></u>]
</pre>
<p><strongclass="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [4], k = 7
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are no subarrays of nums where 7 is the greatest common divisor of all the subarray's elements.