<p>There is a tree (i.e., a connected, undirected graph that has no cycles) consisting of <code>n</code> nodes numbered from <code>0</code> to <code>n - 1</code> and exactly <code>n - 1</code> edges. Each node has a value associated with it, and the <strong>root</strong> of the tree is node <code>0</code>.</p>
<p>To represent this tree, you are given an integer array <code>nums</code> and a 2D array <code>edges</code>. Each <code>nums[i]</code> represents the <code>i<sup>th</sup></code> node's value, and each <code>edges[j] = [u<sub>j</sub>, v<sub>j</sub>]</code> represents an edge between nodes <code>u<sub>j</sub></code> and <code>v<sub>j</sub></code> in the tree.</p>
<p>Two values <code>x</code> and <code>y</code> are <strong>coprime</strong> if <code>gcd(x, y) == 1</code> where <code>gcd(x, y)</code> is the <strong>greatest common divisor</strong> of <code>x</code> and <code>y</code>.</p>
<p>An ancestor of a node <code>i</code> is any other node on the shortest path from node <code>i</code> to the <strong>root</strong>. A node is <strong>not </strong>considered an ancestor of itself.</p>
<p>Return <em>an array </em><code>ans</code><em> of size </em><code>n</code>, <em>where </em><code>ans[i]</code><em> is the closest ancestor to node </em><code>i</code><em> such that </em><code>nums[i]</code><em>and </em><code>nums[ans[i]]</code> are <strong>coprime</strong>, or <code>-1</code><em> if there is no such ancestor</em>.</p>